Boosting feature selection for Neural Network based regression
نویسندگان
چکیده
منابع مشابه
Boosting feature selection for Neural Network based regression
The head pose estimation problem is well known to be a challenging task in computer vision and is a useful tool for several applications involving human-computer interaction. This problem can be stated as a regression one where the input is an image and the output is pan and tilt angles. Finding the optimal regression is a hard problem because of the high dimensionality of the input (number of ...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملFilters, Wrappers and a Boosting-Based Hybrid for Feature Selection
In this paper, we examine the advantages and disadvantages of filter and wrapper methods for feature selection and propose a new hybrid algorithm that uses boosting and incorporates some of the features of wrapper methods into a fast filter method for feature selection. Empirical results are reported on six real-world datasets from the UCI repository, showing that our hybrid algorithm is compet...
متن کاملFeature Selection for Regression Problems
Feature subset selection is the process of identifying and removing from a training data set as much irrelevant and redundant features as possible. This reduces the dimensionality of the data and may enable regression algorithms to operate faster and more effectively. In some cases, correlation coefficient can be improved; in others, the result is a more compact, easily interpreted representati...
متن کاملFast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Networks
سال: 2009
ISSN: 0893-6080
DOI: 10.1016/j.neunet.2009.06.039